Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5229, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433255

RESUMO

In the Anthropocene, plastic pollution has become a new environmental biotope, the so-called plastisphere. In the oceans, nano- and micro-sized plastics are omnipresent and found in huge quantities throughout the water column and sediment, and their large surface area-to-volume ratio offers an excellent surface to which hydrophobic chemical pollutants (e.g. petrochemicals and POPs) can readily sorb to. Our understanding of the microbial communities that breakdown plastic-sorbed chemical pollutants, however, remains poor. Here, we investigated the formation of 500 nm and 1000 nm polystyrene (PS) agglomerations in natural seawater from a coastal environment, and we applied DNA-based stable isotope probing (DNA-SIP) with the 500 nm PS sorbed with isotopically-labelled phenanthrene to identify the bacterial members in the seawater community capable of degrading the hydrocarbon. Whilst we observed no significant impact of nanoplastic size on the microbial communities associated with agglomerates that formed in these experiments, these communities were, however, significantly different to those in the surrounding seawater. By DNA-SIP, we identified Arcobacteraceae, Brevundimonas, Comamonas, uncultured Comamonadaceae, Delftia, Sphingomonas and Staphylococcus, as well as the first member of the genera Acidiphilum and Pelomonas to degrade phenanthrene, and of the genera Aquabacterium, Paracoccus and Polymorphobacter to degrade a hydrocarbon. This work provides new information that feeds into our growing understanding on the fate of co-pollutants associated with nano- and microplastics in the ocean.


Assuntos
Comamonadaceae , Poluentes Ambientais , Microbiota , Fenantrenos , Microplásticos , Plásticos , Poliestirenos , Sondas de DNA , Isótopos , DNA
2.
Chemosphere ; 346: 140569, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918533

RESUMO

2,4-D and fipronil are among Brazil's most used pesticides. The presence of these substances in surface waters is a concern for the aquatic ecosystem health. Thus, understanding the behavior of these substances under environmentally relevant conditions is essential for an effective risk assessment. This study aimed to determine the degradation profiles of 2,4-D and fipronil after controlled application in aquatic mesocosm systems under influencing factors such as environmental aspects and vinasse application, evaluate pesticide dissipation at the water-sediment interface, and perform an environmental risk assessment in water and sediment compartments. Mesocosm systems were divided into six different treatments, namely: control (C), vinasse application (V), 2,4-D application (D), fipronil application (F), mixture of 2,4-D and fipronil application (M), and mixture of 2,4-D and fipronil with vinasse application (MV). Pesticide application was performed according to typical Brazilian sugarcane management procedures, and the experimental systems were monitored for 150 days. Pesticide dissipation kinetics was modeled using first-order reaction models. The estimated half-life times of 2,4-D were 18.2 days for individual application, 50.2 days for combined application, and 9.6 days for combined application with vinasse. For fipronil, the respective half-life times were 11.7, 13.8, and 24.5 days. The dynamics of pesticides in surface waters resulted in the deposition of these compounds in the sediment. Also, fipronil transformation products fipronil-sulfide and fipronil-sulfone were quantified in water 21 days after pesticide application. Finally, performed risk assessments showed significant potential risk to environmental health, with RQ values for 2,4-D up to 1359 in freshwater and 98 in sediment, and RQ values for fipronil up to 22,078 in freshwater and 2582 in sediment.


Assuntos
Praguicidas , Poluentes Químicos da Água , Ecossistema , Poluentes Químicos da Água/análise , Praguicidas/toxicidade , Praguicidas/análise , Água , Ácido 2,4-Diclorofenoxiacético/toxicidade
3.
Environ Int ; 173: 107650, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848829

RESUMO

Bioaccumulation is a key factor in understanding the potential ecotoxicity of substances. While there are well-developed models and methods to evaluate bioaccumulation of dissolved organic and inorganic substances, it is substantially more challenging to assess bioaccumulation of particulate contaminants such as engineered carbon nanomaterials (CNMs; carbon nanotubes (CNTs), graphene family nanomaterials (GFNs), and fullerenes) and nanoplastics. In this study, the methods used to evaluate bioaccumulation of different CNMs and nanoplastics are critically reviewed. In plant studies, uptake of CNMs and nanoplastics into the roots and stems was observed. For multicellular organisms other than plants, absorbance across epithelial surfaces was typically limited. Biomagnification was not observed for CNTs and GFNs but were observed for nanoplastics in some studies. However, the reported absorption in many nanoplastic studies may be a consequence of an experimental artifact, namely release of the fluorescent probe from the plastic particles and subsequent uptake. We identify that additional work is needed to develop analytical methods to provide robust, orthogonal methods that can measure unlabeled (e.g., without isotopic or fluorescent labels) CNMs and nanoplastics.


Assuntos
Fulerenos , Grafite , Nanotubos de Carbono , Nanotubos de Carbono/toxicidade , Microplásticos , Bioacumulação
4.
Mutagenesis ; 38(1): 13-20, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36130095

RESUMO

Interspecific comparison of DNA damage can provide information on the relative vulnerability of marine organisms to toxicants that induce oxidative genotoxicity. Hydrogen peroxide (H2O2) is an oxidative toxicant that causes DNA strand breaks and nucleotide oxidation and is used in multiple industries including Atlantic salmon aquaculture to treat infestations of ectoparasitic sea lice. H2O2 (up to 100 mM) can be released into the water after sea lice treatment, with potential consequences of exposure in nontarget marine organisms. The objective of the current study was to measure and compare differences in levels of H2O2-induced oxidative DNA damage in coelomocytes from Scottish sea urchins Echinus esculentus, Paracentrotus lividus, and Psammechinus miliaris. Coelomocytes were exposed to H2O2 (0-50 mM) for 10 min, cell concentration and viability were quantified, and DNA damage was measured by the fast micromethod, an alkaline unwinding DNA method, and the modified fast micromethod with nucleotide-specific enzymes. Cell viability was >92% in all exposures and did not differ from controls. Psammechinus miliaris coelomocytes had the highest oxidative DNA damage with 0.07 ± 0.01, 0.08 ± 0.01, and 0.07 ± 0.01 strand scission factors (mean ± SD) after incubation with phosphate-buffered saline, formamidopyrimidine-DNA glycosylase, and endonuclease-III, respectively, at 50 mM H2O2. Exposures to 0.5 mM H2O2 (100-fold dilution from recommended lice treatment concentration) induced oxidative DNA damage in all three species of sea urchins, suggesting interspecific differences in vulnerabilities to DNA damage and/or DNA repair mechanisms. Understanding impacts of environmental genotoxicants requires understanding species-specific susceptibilities to DNA damage, which can impact long-term stability in sea urchin populations in proximity to aquaculture farms.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Animais , Peróxido de Hidrogênio/toxicidade , Ouriços-do-Mar/genética , Reparo do DNA , Dano ao DNA
5.
Environ Sci Technol ; 56(22): 15192-15206, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240263

RESUMO

To fully understand the potential ecological and human health risks from nanoplastics and microplastics (NMPs) in the environment, it is critical to make accurate measurements. Similar to past research on the toxicology of engineered nanomaterials, a broad range of measurement artifacts and biases are possible when testing their potential toxicity. For example, antimicrobials and surfactants may be present in commercially available NMP dispersions, and these compounds may account for toxicity observed instead of being caused by exposure to the NMP particles. Therefore, control measurements are needed to assess potential artifacts, and revisions to the protocol may be needed to eliminate or reduce the artifacts. In this paper, we comprehensively review and suggest a next generation of control experiments to identify measurement artifacts and biases that can occur while performing NMP toxicity experiments. This review covers the broad range of potential NMP toxicological experiments, such as in vitro studies with a single cell type or complex 3-D tissue constructs, in vivo mammalian studies, and ecotoxicity experiments testing pelagic, sediment, and soil organisms. Incorporation of these control experiments can reduce the likelihood of false positive and false negative results and more accurately elucidate the potential ecological and human health risks of NMPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Artefatos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Mamíferos
6.
Front Microbiol ; 13: 909853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910618

RESUMO

Holobionts formed by a host organism and associated symbionts are key biological units in marine ecosystems where they are responsible for fundamental ecosystem services. Therefore, understanding anthropogenic impacts on holobionts is essential. Sponges (Phylum Porifera) are ideal holobiont models. They host a complex microbial community and provide ecosystem services including nutrient cycling. At bathyal depths, sponges can accumulate forming dense sponge ground habitats supporting biodiverse associated communities. However, the impacts of spilled oil and dispersants on sponge grounds cannot be understood without considering exposures mediated through sponge filtration of marine snow particles. To examine this, we exposed the model sponge Halichondria panicea to oil, dispersant and "marine oil snow" contaminated seawater and elucidate the complex molecular response of the holobiont through metatranscriptomics. While the host response included detoxification and immune response pathways, the bacterial symbiotic response differed and was at least partially the result of a change in the host environment rather than a direct response to hydrocarbon exposure. As the sponge host reduced its pumping activity and internal tissue oxygen levels declined, the symbionts changed their metabolism from aerobic to anaerobic pathways possibly via quorum sensing. Furthermore, we found evidence of hydrocarbon degradation by sponge symbionts, but sponge mortality (even when exposed to low concentrations of hydrocarbons) implied this may not provide the holobiont with sufficient resilience against contaminants. Given the continued proposed expansion of hydrocarbon production into deep continental shelf and slope settings where sponge grounds form significant habitats it is important that dispersant use is minimised and that environmental impact assessments carefully consider the vulnerability of sponge holobionts.

7.
Chemosphere ; 307(Pt 2): 135959, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35944683

RESUMO

Near-shore marine/estuarine environments play an important role in the functioning of the marine ecosystem and are extremely vulnerable to the presence of chemical pollution. The ability to investigate the effects of pollution is limited by a lack of model organisms for which sufficient ecotoxicological information is available, and this is particularly true for tropical regions. The circumtropical marine amphipod Parhyale hawaiensis has become an important model organism in various disciplines, and here we summarize the scientific literature regarding the emergence of this model within ecotoxicology. P. hawaiensis is easily cultured in the laboratory and standardized ecotoxicity protocols have been developed and refined (e.g., miniaturized), and effects of toxicants on acute toxicity (Cd, Cu, Zn, Ag, ammonia, dyes, pesticides, environmental samples), genotoxicity as comet assay/micronuclei, and gene expression (Ag ion and Ag nanoparticles) and regeneration (pesticides) have been published. Methods for determination of internal concentrations of metals (Cu and Ag) and organic substances (synthetic dye) in hemolymph were successfully developed providing sources for the establishment of toxicokinetics models in aquatic amphipods. Protocols to evaluate reproduction and growth, for testing immune responses and DNA damage in germ cells are under way. The sensitivity of P. hawaiensis, measured as 50% lethal concentration (LC50), is in the same range as other amphipods. The combination of feasibility to culture P. hawaiensis in laboratory, the recent protocols for ecotoxicity evaluation and the rapidly expanding knowledge on its biology make it especially attractive as a model organism and promising tool for risk assessment evaluations in tropical environments.


Assuntos
Anfípodes , Nanopartículas Metálicas , Praguicidas , Poluentes Químicos da Água , Amônia , Animais , Cádmio/farmacologia , Corantes/farmacologia , Ecossistema , Ecotoxicologia , Praguicidas/análise , Prata/toxicidade , Poluentes Químicos da Água/metabolismo
8.
Nanotoxicology ; 16(3): 333-354, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35797989

RESUMO

Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).


Assuntos
Nanoestruturas , Óxido de Zinco , Animais , Animais Geneticamente Modificados , Larva , Nanoestruturas/toxicidade , Neutrófilos , Peixe-Zebra , Óxido de Zinco/toxicidade
9.
Toxicon ; 211: 70-78, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306038

RESUMO

The process of eutrophication and consequent proliferation of cyanobacteria in rivers and lakes leads to increasing numbers of harmful algal blooms and higher concentration of toxic metabolites in freshwater bodies. Microcystin is a toxic metabolite produced by cyanobacteria that is frequently detected and can pose health risks to important freshwater species including fish. The aim of the present study was to evaluate the effects of microcystin-LR on the morphology of Astyanax altiparanae's liver and muscle. One hundred (n = 100) Astyanax altiparanae were divided into 5 groups (n = 20) with 24 h and 96 h of microcystin exposition at two doses of 0.5 and 1.0 µg/L. Differences were observed in the microcystin treatment with respect to histopathological analyses including cytoplastic degradation, displacement, and increase in nuclei volume and area of hepatocytes. Hyperemia and dilation of blood capillaries were seen in the liver. There were also observable changes in the size of muscle fibers and muscle inflammation. Our results demonstrate that microcystins can impact the integrity of both tissues even at sublethal concentrations. Low doses of microcystins are therefore sufficient to intoxicate fish livers and muscle tissues.


Assuntos
Proliferação Nociva de Algas , Microcistinas , Animais , Lagos/análise , Fígado , Toxinas Marinhas , Microcistinas/análise , Músculos/química
10.
Environ Sci Technol ; 55(6): 3727-3735, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33651588

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and titanium dioxide (TiO2) nanoparticles (NPs) are photoactive environmental pollutants that can contaminate aquatic environments. Aqueous-phase interactions between PAHs and TiO2-NPs are of interest due to their emerging environmental relevance, particularly with the deliberate application of TiO2-NPs to remediate pollution events (e.g., oil spills). Our objective was to investigate anthracene (ANT) and phenanthrene (PHE) photoproduct formation and transformation following ultraviolet A (UVA) irradiation in the presence and absence of TiO2-NPs. ANT and PHE solutions were prepared alone or in combination with TiO2-NPs, UVA-irradiated, and either exposed to larval zebrafish or collected for chemical analyses of diverse hydroxylated PAHs (OHPAHs) and oxygenated PAHs (OPAHs). The expression profiles of genes encoding for enzymes involved in PAH metabolism showed PAH-specific and time-dependent inductions that demonstrated changes in PAH and photoproduct bioavailability in the presence of TiO2-NPs. Chemical analyses of PAH/NP solutions in the absence of zebrafish larvae identified diverse photoproducts of differing size and ring arrangements, which suggested photodissociation, recombination, and ring re-arrangements of PAHs occurred either during or following UVA irradiation. Both ANT and PHE solutions showed heightened oxidative potential following irradiation, but TiO2-NP-related increases in oxidative potential were PAH-specific. The exploitation of multiple analytical methods provided novel insights into distinct PAH photoactivity, TiO2-NP influence on photoproduct formation in a PAH-specific manner, and the significant role time plays in photochemical processes.


Assuntos
Nanopartículas , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Antracenos , Titânio , Peixe-Zebra
11.
Nanotoxicology ; 15(1): 1-20, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33272088

RESUMO

Assessment of nanomaterial (NM) induced inflammatory responses has largely relied on rodent testing via measurement of leukocyte accumulation in target organs. Despite observations that NMs activate neutrophil driven inflammatory responses in vivo, a limited number of studies have investigated neutrophil responses to NMs in vitro. We compared responses between the human neutrophil-like HL-60 cell line and human primary neutrophils following exposure to silver (Ag), zinc oxide (ZnO), copper oxide (CuO) and titanium dioxide (TiO2) NMs. NM cytotoxicity and neutrophil activation were assessed by measuring cellular metabolic activity, cytokine production, respiratory burst, and release of neutrophil extracellular traps. We observed a similar pattern of response between HL-60 cells and primary neutrophils, however we report that some neutrophil functions are compromised in the cell line. Ag NMs were consistently observed to stimulate neutrophil activation, with CuO NMs inducing similar though weaker responses. TiO2 NMs did not induce a neutrophil response in either cell type. Interestingly, ZnO NMs readily induced activation of HL-60 cells but did not appear to activate primary cells. Our findings are relevant to the development of a tiered testing strategy for NM hazard assessment which promotes the use of non-rodent models. Whilst we acknowledge that HL-60 cells may not be a perfect substitute for primary cells and require further investigation regarding their ability to predict neutrophil activation, we recommend their use for initial screening of NM-induced inflammation. Primary human neutrophils can then be used for more focused assessments of neutrophil activation before progressing to in vivo models where necessary.


Assuntos
Nanoestruturas/toxicidade , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Prata/toxicidade , Titânio/toxicidade , Óxido de Zinco/toxicidade , Cobre , Células HL-60 , Humanos , Inflamação/induzido quimicamente
12.
ACS Infect Dis ; 6(11): 2959-2969, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32960047

RESUMO

The continued emergence and spread of antimicrobial resistance (AMR), particularly multidrug resistant (MDR) bacteria, are increasing threats driving the search for additional and alternative antimicrobial agents. The World Health Organization (WHO) has categorized bacterial risk levels and includes Escherichia coli among the highest priority, making this both a convenient model bacterium and a clinically highly relevant species on which to base investigations of antimicrobials. Among many compounds examined for use as antimicrobials, Ga(III) complexes have shown promise. Nonetheless, the spectrum of activities, susceptibility of bacterial species, mechanisms of antimicrobial action, and bacterial characteristics influencing antibacterial actions are far from being completely understood; these are important considerations for any implementation of an effective antibacterial agent. In this investigation, we show that an alteration in growth conditions to physiologically relevant lowered oxygen (anaerobic) conditions substantially increases the minimum inhibitory concentrations (MICs) of Ga(III) required to inhibit growth for 46 wild-type E. coli strains. Several studies have implicated a Trojan horse hypothesis wherein bacterial Fe uptake systems have been linked to the promotion of Ga(III) uptake and result in enhanced antibacterial activity. Our studies show that, conversely, the carriage of accessory Fe uptake systems (Fe_acc) significantly increased the concentrations of Ga(III) required for antibacterial action. Similarly, it is shown that MDR strains are more resistant to Ga(III). The increased tolerance of Fe_acc/MDR strains was apparent under anaerobic conditions. This phenomenon of heightened tolerance has not previously been shown although the mechanisms remain to be defined. Nonetheless, this further highlights the significant contributions of bacterial metabolism, fitness, and AMR characteristics and their implications in evaluating novel antimicrobials.


Assuntos
Anti-Infecciosos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Compostos Férricos , Oxigênio
13.
Environ Pollut ; 263(Pt A): 114422, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32244159

RESUMO

Plastic polymers such as polyvinyl chloride (PVC) may contain chemical additives, such as lead (Pb), that are leachable in aqueous solution. The fragmentation into microplastics (MPs) of plastics such as PVC may facilitate desorption of chemical additives and increase exposure of aquatic animals. In this study, the role of chemical additives in the aqueous toxicity of PVC, high-density polyethylene (HDPE) and polyethylene terephthalate (PET) MPs were investigated in early-life stage zebrafish (Danio rerio) by assessment of changes in expression of biomarkers. Exposure of zebrafish larvae to PVC for 24 h increased expression of metallothionein 2 (mt2), a metal-binding protein, but no changes in expression of biomarkers of estrogenic (vtg1) or organic (cyp1a) contaminants were observed. HDPE and PET caused no changes in expression of any biomarkers. A filtered leachate of the PVC also caused a significant increase in expression of mt2 and indicated that a desorbed metal additive likely elicited the response in zebrafish. Metal release was confirmed by acid-washing the MPs which mitigated the response in mt2. Metal analysis showed Pb leached from PVC into water during exposures; at 500 mg PVC L-1 in water, 84.3 ± 8.7 µg Pb L-1 was measured after 24 h. Exposure to a Pb-salt at this concentration caused a comparable mt2 increase in zebrafish as observed in exposures to PVC. These data indicated that PVC MPs elicited a response in zebrafish but the effect was indirect and mediated through desorption of Pb from PVC into the exposure water. Data also indicated that PVC MPs may act as longer-term environmental reservoirs of Pb for exposure of aquatic animals; the Pb leached from PVC in 24 h in freshwater equated to 2.52% of total Pb in MPs leachable by the acid-wash. Studies of MPs should consider the potential role of chemical additives in toxicity observed.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Chumbo , Cloreto de Polivinila , Peixe-Zebra
14.
Sci Total Environ ; 715: 136941, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32041050

RESUMO

Lead-halide perovskite nanoparticles (NPs) are a new technology, and investigation of toxicity is of considerable importance due to the potential lead (Pb) release into the environment. The aim of the study was to investigate aqueous and dietary toxicity of Pb-halide perovskite NP and Pb in zebrafish Danio rerio. Perovskite NP toxicity was evaluated in zebrafish by mortality, gene expression, histopathology, and phylogenetic analysis of gut microbiota. Zebrafish larvae were exposed to five Pb-halide perovskite NPs in parallel with Pb(NO3)2 exposures, and zebrafish adults were exposed to the three perovskite NPs that caused the strongest effect and Pb(NO3)2. No median lethal concentration (LC50) was observed for zebrafish larvae exposed to up to 200 mg/L of perovskite NPs for 96 h. Mortality, metallothionein 2 (mt2) and δ-aminolevulinic acid dehydratase (ala-d) gene expression (24-h exposure) in zebrafish larvae after aqueous perovskite NPs exposures did not differ from total Pb concentration - response curves. The lack of differences in mortality and gene expression between perovskite NPs and soluble Pb after aqueous exposure suggest that toxicity from perovskite NPs can be attributed to bioavailable Pb rather than nano-specific effects. Induction of mt2 and reduction of ala-d expression levels in liver tissues showed Pb bioavailability after 2-d and 4-d dietary exposure to perovskite-spiked feeds. Changes in gut microbiota of adult zebrafish were detected after 14-d exposure to Pb-spiked food, but no changes were detected from perovskite-NP spiked food. The phylogenetic analysis identified different microbiome profiles of Pb-fed fish compared to perovskite-fed fish suggesting a different mechanism of toxicity. Exposure to Pb-halide perovskite NPs led to absorption of Pb likely from release of Pb ions rather than absorption of NPs. Pb-halide perovskite NPs can release bioavailable Pb and this needs to be considered during the development of this technology.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Animais , Compostos de Cálcio , Chumbo , Óxidos , Filogenia , Titânio , Poluentes Químicos da Água , Peixe-Zebra
15.
Environ Pollut ; 260: 113963, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32004961

RESUMO

Analysis of the transcriptome of organisms exposed to toxicants offers new insights for ecotoxicology, but further research is needed to enhance interpretation of results and effectively incorporate them into useful environmental risk assessments. Factors that must be clarified to improve use of transcriptomics include assessment of the effect of organism sex within the context of toxicant exposure. Amphipods are well recognized as model organisms for toxicity evaluation because of their sensitivity and amenability to laboratory conditions. To investigate whether response to metals in crustaceans differs according to sex we analyzed the amphipod Parhyale hawaiensis after exposure to AgCl and Ag nanoparticles (AgNP) via contaminated food. Gene specific analysis and whole genome transcriptional profile of male and female organisms were performed by both RT-qPCR and RNA-seq. We observed that expression of transcripts of genes glutathione transferase (GST) did not differ among AgCl and AgNP treatments. Significant differences between males and females were observed after exposure to AgCl and AgNP. Males presented twice the number of differentially expressed genes in comparison to females, and more differentially expressed were observed after exposure to AgNP than AgCl treatments in both sexes. The genes that had the greatest change in expression relative to control were those genes related to peptidase and catalytic activity and chitin and carbohydrate metabolic processes. Our study is the first to demonstrate sex specific differences in the transcriptomes of amphipods upon exposure to toxicants and emphasizes the importance of considering gender in ecotoxicology.


Assuntos
Anfípodes/genética , Nanopartículas Metálicas , Prata/toxicidade , Animais , Ecotoxicologia , Feminino , Perfilação da Expressão Gênica , Masculino , Transcriptoma
16.
Toxins (Basel) ; 11(4)2019 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-31013880

RESUMO

Absorption and accumulation of bioavailable cyanobacterial metabolites (including cyanotoxins) are likely in fish after senescence and the rupturing of cells during bloom episodes. We determined the toxicity of cyanopeptides identified from two strains of Microcystis (M. panniformis MIRS-04 and M. aeruginosa NPDC-01) in a freshwater tropical fish, Astyanax altiparanae (yellowtail tetra, lambari). Aqueous extracts of both Microcystis strains were prepared in order to simulate realistic fish exposure to these substances in a freshwater environment. Both strains were selected because previous assays evidenced the presence of microcystins (MCs) in MIRS-04 and lack of cyanotoxins in NPDC-01. Identification of cyanobacterial secondary metabolites was performed by LC-HR-QTOF-MS and quantification of the MC-LR was carried out by LC-QqQ-MS/MS. MIRS-04 produces the MCs MC-LR, MC-LY and MC-HilR as well as micropeptins B, 973, 959 and k139. NPCD-01 biosynthetizes microginins FR1, FR2/FR4 and SD-755, but does not produce MCs. Larval fish survival and changes in morphology were assessed for 96 h exposure to aqueous extracts of both strains at environmentally relevant concentrations from 0.1 to 0.5 mg (dry weight)/mL, corresponding to 0.15 to 0.74 µg/mL of MC-LR (considering dried amounts of MIRS-04 for comparison). Fish mortality increased with concentration and time of exposure for both strains of Microcystis. The frequencies of morphological abnormalities increased with concentration in both strains, and included abdominal and pericardial oedema, and spinal curvature. Results demonstrate that toxicity was not solely caused by MCs, other classes of cyanobacterial secondary metabolites contributed to the observed toxicity.


Assuntos
Toxinas Bacterianas/toxicidade , Characidae/anormalidades , Larva/efeitos dos fármacos , Microcystis , Peptídeos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Larva/crescimento & desenvolvimento
17.
Sci Total Environ ; 670: 915-920, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30921723

RESUMO

Whether nanoplastics (NPs) are able to be absorbed across epithelial membranes and accumulate within internal tissues of organisms is an important determinant of their potential toxicity. Evidence of absorption and accumulation requires detection of NPs within internal tissues, and investigations with fluorescently labelled NPs have attempted to provide this information. We hypothesize that studies that do not control for the fluorescent dye leachate and/or cellular autofluorescence are inconclusive and can be misinterpreted. Our goal was to analyse previous investigations critically and conduct further research to determine if fluorescent-labelled polystyrene NPs (nanoPS) can provide conclusive evidence of absorption and internal accumulation of NPs. We exposed zebrafish embryos and larvae to NPs (500 and 1000 nm) labelled with a green or an orange fluorescent dye, to solutions resulting from nanoPS dialysis, and to Nile-Red (a fluorescent dye used as a positive control). Previous studies have claimed that NPs cross epithelia without accounting for dye leachates and/or cellular autofluorescence. Our results demonstrate that commercial fluorescent-labelled nanoPS can leach their fluorophores, and the fluorophore alone can accumulate within internal tissues of zebrafish larvae. We further observed green autofluorescence in fish larvae not exposed to any particles. Previous claims of NP absorption based on observations of fluorescence in zebrafish tissues should thus be considered inconclusive. Although the addition of purification steps and inclusion of controls for leaching of dyes are methodological improvements, the use of fluorescent nanoPS should not be considered to provide absolute conclusive evidence of particle absorption.

18.
Environ Toxicol Chem ; 38(4): 806-810, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30638280

RESUMO

On release into surface waters, engineered silver nanoparticles (AgNPs) tend to settle to sediments and, consequently, epibenthic fauna will be exposed to them through diet. We established Ag uptake and accumulation profiles over time in the hemolymph of a marine amphipod fed with a formulated feed containing AgNPs or AgCl. Silver bioavailability was higher in organisms exposed to AgNPs, indicating that the nanoparticles pose a higher risk of toxicity compared to similar concentrations of AgCl. Environ Toxicol Chem 2019;38:806-810. © 2019 SETAC.


Assuntos
Anfípodes , Exposição Dietética/análise , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Anfípodes/metabolismo , Animais , Disponibilidade Biológica , Hemolinfa/química , Prata/metabolismo , Compostos de Prata/metabolismo , Compostos de Prata/toxicidade , Poluentes Químicos da Água/metabolismo
19.
Mar Pollut Bull ; 139: 157-162, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30686414

RESUMO

Microplastics (MPs) are contaminants of environmental concern that represent a threat to marine systems. Here we report data on the abundance and characteristics of MPs collected from surface waters of the urban Guanabara Bay. Samples were collected, by horizontal trawling of a plankton net on two occasions (summer of 2016). The MPs were obtained from samples by sieving and particles were manually sorted with microscope. Characterization of MPs was accomplished by gravimetry and digital image processing (for quantification and morphology categorization), and chemical composition identified by infrared spectroscopy and elemental analyses. Total MPs ranged from 1.40 to 21.3 particles/m3, which places Guanabara Bay amongst the most contaminated coastal systems worldwide by microplastics. Polyethylene and polypropylene polymers ≤1 mm were the most abundant particles. Therefore, the occurrence of MPs in Guanabara Bay is relevant to understand ecological hazards of exposition to marine biota and merits further investigation.


Assuntos
Baías/química , Monitoramento Ambiental/métodos , Plásticos/análise , Poluentes Químicos da Água/análise , Brasil , Estações do Ano , Urbanização
20.
Mar Pollut Bull ; 138: 312-321, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30660279

RESUMO

The European oyster Ostrea edulis is a keystone species that is internationally recognised as 'threatened and declining' in the NE Atlantic by OSPAR and several nations have consequently adopted strategies for its conservation and restoration. Understanding the settlement behaviour of O. edulis larvae is crucial to inform these strategies. We compared the efficiency of several treatments in triggering settlement. The most effective settlement occurred with the presence of conspecifics: 100% settled in <23 h. Marine stones with habitat-associated biofilms induced 81% settlement that started after a 45 h delay. Sterile shells and terrestrial stones did not induce more settlement than control treatments. These results indicate that O. edulis larvae are gregarious and finely-tuned to settle in response to cues which are indicative of their adult habitat requirements. The role of chemical cues in mediating settlement, and the importance of this to restoration, are discussed.


Assuntos
Comportamento Animal , Conservação dos Recursos Naturais , Recuperação e Remediação Ambiental , Ostrea/fisiologia , Animais , Monitoramento Ambiental , Larva , Ostrea/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...